
1. Introduction. In this note we produce an analog of the inverse spectral method
(used to study, among other things, the continuous limit of the Toda lattice and
the dispersionless limit of the KdV equation) for a class of “tri-diagonal” Toeplitz
operators obtained from quantizing S2.

2. Toeplitz Quantization. We begin with some notation and a discussion of the
quantization of S2.

Consider CP1, the set of 1-dimensional complex subspaces of C2. Let [z0 : z1]
denote the subspace of C2 spanned by the vector (z0, z1) ∈ C2\{0}. These lead to
coordinate charts Uj that cover CP1 given by:

Uj = {[z0 : z1]; zi 6= 0}

with corresponding diffeomorphisms φ0(z) = [1 : z] and φ1(z) = [z : 1] that turns
CP1 into a complex manifold. Endow CP1 with the Fubini-Study form given by:

ωFS = i∂∂ log(1 + |z|2)

in complex coordinates. With this form CP1 becomes a Kähler manifold.
Recall the tautological line bundle:

O(−1) =
{

([z0 : z1], (w1, w2)) ∈ CP1 × C2; (w1, w2) ∈ [z0 : z1]
}

with projection map π([u], v) = [u] and consider the trivialization induced by the
local coordinates for U1:

τ : φ−11 (U1)× C→ φ−11 (U1)× C2; (z, w) 7→ (z, w(z, 1)).

Define the following Hermitian form in this coordinate patch via the formula:

hz(w, v) = (1 + |z|2)wv.

Then one can check that this Hermitian form extends to a Hermitian form on
all of O(−1) and the curvature of the associated canoncial connection (the Chern
connection) is:

curv(O(−1)) = −∂∂ log(1 + |z|2) = iωFS.

Therefore, if we take the dual of the tautological line bundle, O(1), we get a pre-
quantum line bundle. Let O(k) = O(1)⊗k and let Hk be the space of holomorphic
sections of O(k). Endow smooth sections of O(k) with the Hermitian form:

〈f, g〉k =

∫
CP1

hk(f, g) dλ,

where hk is the hermitian form on O(k) associated to h and λ is the Liouville
measure associated to ωFS . Let L2(CP1,O(k)) be the completion of C∞(CP1,O(k))
with respect to the norm induced from 〈·, ·〉k. Define the Szegö projector:

Πk : L2(CP1,O(k))→ Hk.

Given a function H ∈ C∞(CP1,R) we define its quantization to be:

T
(k)
H : L2(CP1,O(k))→ L2(CP1,O(k)); f 7→ Πk(Hf).
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In this setting a Toeplitz operator T corresponds to a sequence of operators T (k) : Hk →
Hk for k = 1, 2, . . . that admits an asymptotic expansion:

T (k) ∼
∞∑
j=0

k−jT
(k)
Hj
,

where {Hj} is a sequence of smooth functions and ∼ is meant in the operator norm.

2.1. Quantization of the principal bundle. Let Z denote the S1-bundle of
elements in O(−1) of length one in each fiber. Using the local trivialization induced
from the coordinate chart for U1 we get a local trivialization of Z:

τ̃ : φ−11 (U1)× S1 → φ−11 (U1)× C2; (z, eiθ) 7→ (z,
eiθ

(1 + |z|2)1/2
(z, 1)).

This trivialization essentially shows there is a bundle isomorphism Z ∼= S3 ⊂ C2

(viewing S3 as an S1 bundle over CP1 via the Hopf fibration). We will now identify
Z with S3.

Let C∞(S3)k denote the space of k-equivariant (with respect to the S1-action)
smooth C-valued functions on S3. There is a natural isomorphism between C∞(CP1,O(k))
and C∞(S3)k. Using this identification, the Chern connection on C∞(CP1,O(1))
gives rise to a connection form on C∞(S3)k. Denote this connection form by α.
Then we get an invariant volume form on S3 from ( α2π )∧ dα. It turns out that this

volume form is a scalar multiple of the standard volume form on S3. For simplicity,
we will assume that it is equal to the standard volume form. Thus, we have an
isometry of Hilbert spaces:

L2(CP1,O(k)) ∼= L2(S3,C)k

We can identify any k-equivariant C-valued smooth function as a k-homogenous
smooth C-valued function on C2. Similarly, given a smooth k-equivariant function
on S3 we there is a corresponding unique smooth k-homogenous function on C2.
Moreover, using the local section of S3 given by z 7→ 1

(1+|z|2)1/2 (z, 1), we can identify

an element of C∞(S3,C)k with an element of C∞(C,C) by:

C∞(S3,C)k → C∞(C,C);
1

(1 + |z|2)k/2
ψ(z, 1) 7→ ψ(z).

Under the isometry of Hilbert spaces above, we get an associated Hermitian form:

〈ψ(z), φ(z)〉k =
1

2

∫
C
ψ(z)φ(z)

|dz ∧ dz̄|
(1 + |z|2)k+2

.

The image of Hk under this isomorphism is given by holomorphic k-homogenous
functions of two complex variables, which are just polynomials. Throughout the
rest of this note we will make implicit reference to these identifications.

Lemma 2.1. Under the previous identifications, the collection of polynomials {e`}k`=0,
where:

e` =

√
(k + 1)

(
k
`

)
π

z`,
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form an orthonormal basis for Hk. Consequently, the Schwartz Kernel for the Szegö
projector is:

Πk(z, w) =
k + 1

π
(1 + zw)k.

2.2. Coordinates on S2. Recall that we can identify CP1 as the quotient
S3/S1. Then we get coordinates on CP1 defined explicitly as:

x1([z1 : z2]) = Re(z1z2); x2([z1 : z2]) = Im(z1z2);

x3([z1 : z2]) =
1

2
(|z1|2 − |z2|2).

This shows that CP1 can be identified with the sphere of radius 1/2. Identifying
CP1 = S3/S1 via the local section z 7→ 1

(1+|z|2)1/2 (z, 1) yields coordinate functions

in the local trivialization:

x1(z) =
Re(z)

1 + |z|2
; x2(z) =

Im(z)

1 + |z|2
; x3(z) =

1

2

|z|2 − 1

|z|2 + 1
.

We will prefer to write the symbols of our Toeplitz operators in the usual (h, θ)
coordinates on S2, where h = x3 + 1/2.

3. Tri-diagonal Toeplitz operators and the spectral measure. Consider a
smooth R-valued function H on S2 given in (h, θ)-coordinates as H(h, θ) = a(h) +
2b(h) cos θ. We get a corresponding Toeplitz operator by quantizing H:

T
(k)
H : Hk → Hk; f 7→ Πk(Hf).

For a fixed k, T
(k)
H is a self-adjoint linear operator on a finite dimensional vector

space. Therefore, we can orthogonally diagonalize T
(k)
H . Moreover, with respect to

the orthonormal basis for Hk given in Section 2, each T
(k)
H is tri-diagonal. Following

[Dei99, Chapter 2] (and assuming that our H is chosen so that the off-diagonal terms

of T
(k)
H are all positive), we can orthogonally diagonalize T

(k)
H and let λ

(k)
i denote the

eigenvalues (which are necessarily simple) and let w
(k)
i denote the first component

of a normalized eigenvector corresponding to eigenvalue λ
(k)
i (which is necessarily

non-zero). For each k form the so-called spectral measure of T
(k)
H :

dµk(s) =

k∑
i=0

(w
(k)
i )2δ(s− λ(k)i ).

The moments of these measures are given by the formulas:∫
R
sn dµk(s) = 〈TnHe0, e0〉k.

For a fixed k the map T
(k)
H 7→ µk is injective. We will prove that if a and 1√

h(1−h)
b

are real analytic, then H can be recovered from knowledge of the first two moments
of every µk.

We start by analyzing the tri-diagonal Toeplitz operator H using the identifica-
tions from Section 2.
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Lemma 3.1. Let H(h, θ) = a(h)+2b(h) cos θ be a Hamiltonian on S2. Then under
the identifications from Section 2 the quantization of H is the Toeplitz operator
(T (k)) where:

T (k) : Hk → Hk; ψ(z) 7→ Πk

[
a

(
|z|2

|z|2 + 1

)
ψ(z) +

2Re(z)

1 + |z|2
β

(
|z|2

|z|2 + 1

)
ψ(z)

]
,

(3.1)

where β(h) = 1√
h(1−h)

b(h) (which is a smooth function on S2).

Proof. The z-coordinate expression of h is |z|2
|z|2+1 which explains the first term in

(3.1). For the second term, put β(h) = 1√
h(1−h)

b(h). The fact that β(h) is a smooth

function on the sphere follows from Lemma 3.6 of [BGPU03]. Recall the identity

for cylindrical coordinates on the sphere: 2x1 = 2 cos θ
√
h(1− h). Then from the

definition of β(h) we have:

2x1β(h) = 2 cos θ
√
h(1− h)β(h) = 2b(h) cos θ.

The claim follows from the z-coordinate expression for x1. �

Proposition 3.2. Assume that β(0) > 0. Then the first two moments of µk yield
asymptotic expansions (in k) that determine the Taylor series coefficients of a and
β at zero. Consequently, if a and β are real analytic, one can determine H from
the first two moments of every µk.

Proof. We break the proof up into several claims.

Claim 1. The Taylor series coefficients of a centered at zero are determined by the
asymptotics of the first moments.

Fix k. Then the first moment of T
(k)
H is: 〈T (k)

H e0, e0〉k. From Lemma 3.1:

〈T (k)
H e0, e0〉k =

(k + 1)

2π

∫
C

[
a

(
|z|2

|z|2 + 1

)
+

2Re(z)

1 + |z|2
β

(
|z|2

|z|2 + 1

)]
|dz ∧ dz̄|

(1 + |z|2)k+2
.

(3.2)

The integral of the second term is zero by symmetry. Therefore:

〈T (k)
H e0, e0〉k =

k + 1

2π

∫
C
a

(
|z|2

|z|2 + 1

)
|dz ∧ dz|

(1 + |z|2)k+2

=

∫ ∞
0

a

(
r2

1 + r2

)
2r(k + 1)

(1 + r2)k+2
dr,

where in the second line we changed to polar coordinates and integrated away the θ-
dependence. A tedious calculation reveals that the first 2n Taylor series coefficients

of a
(

r2

1+r2

)
at r = 0 determine the first n Taylor series coefficients of a(s) at s = 0.

Therefore, by Lemma 3.3 we have:∫ ∞
0

a

(
r2

1 + r2

)
2r(k + 1)

(1 + r2)k+2
dr ∼

∞∑
n=0

ã(n)(0)(k − n
2 )!n2 !

n!k!
,(3.3)

where ã(r) = a
(

r2

1+r2

)
. The claim follows.

Claim 2. For every k the vector e0 is an eigenvector of T
(k)
a . Consequently, the

asymptotic expansion for the corresponding eigenvalue of e0 is given by (3.3).
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To prove this claim we compute (using Lemma 2.1):

T (k)
a e0 =

1

2

∫
C

Πk(z, w)a(h)e0
|dw ∧ dw|

(1 + |w|2)k+2

=
1

2

∫
C

k + 1

π
(1 + zw)ka

(
|w|2

1 + |w|2

)
e0
|dw ∧ dw|

(1 + |w|2)k+2
.

(3.4)

Using the last line of (3.4) to regard T
(k)
a e0 as a function of z, we see that the

transformation z 7→ eiθz is equivalent to the change of integration variables w 7→
e−iθw. However, the integral in the last line of (3.4) is obviously invariant under

this change of variables. Therefore, T
(k)
a e0 is not a function of z. The claim follows.

Claim 3. For every k we have: 〈T (k)
a ◦T (k)

2b cos θe0, e0〉k = 〈T (k)
2b cos θ ◦T

(k)
a e0, e0〉k = 0.

We compute:

〈T (k)
a ◦ T (k)

2b cos θe0, e0〉k = 〈T (k)
2b cos θe0, T

(k)
a e0〉k

= λ〈T (k)
2b cos θe0, e0〉k

= 0.

The first equality comes from the fact that T
(k)
a is self-adjoint. The second equality

comes from Claim 2, where λ is the eigenvalue of e0. The third equality comes
from (3.3). A similar computation establishes the claim for the other ordering of
the operators.

The proposition follows from:

Claim 4. The Taylor series coefficients of β centered at zero are determined by the
asymptotics of the second moments.

By Claim 3,

〈T (k)
H ◦ T (k)

H e0, e0〉k = 〈T (k)
a ◦ T (k)

a e0, e0〉k + 〈T (k)
2b cos θ ◦ T

(k)
2b cos θe0, e0〉k

= ‖T (k)
a e0‖2k + ‖T (k)

2b cos θe0‖
2
k.

Since the asymptotic expansion of the first term on the right hand side is determined
from the asymptotic expansion of the first moments, then it suffices to show that
the Taylor series coefficients of β at zero are determined from the second term.

We compute:

‖T (k)
2b cos θe0‖

2
k =

k + 1

2π

∫
C

4Re(z)2

(1 + |z|2)2
β2

(
|z|2

1 + |z|2

)
|dz ∧ dz|

(1 + |z|2)k+2

=
k + 1

2π

∫ ∞
0

4πr2

(1 + r2)2
β2

(
r2

1 + r2

)
rdr

(1 + r2)k+2

=

∫ ∞
0

r2

(1 + r2)2
β2

(
r2

1 + r2

)
2r(k + 1)dr

(1 + r2)k+2

∼
∞∑
n=0

g(n)(0)(k − n
2 )!n2 !

n!k!
,
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where in the first equality we changed to polar coordinates and integrated away the
θ-variables. The asymptotics in the last line come from applying Lemma 3.3, with

g(r) =
r2

(1 + r2)2
β2

(
r2

1 + r2

)
.

To see that the Taylor series coefficients of g determine the coefficients of β, first
notice that if β(0) > 0 then the derivatives of β2(s) evaluated at s = 0 determine
the derivatives of β(s) at s = 0. Second, as observed in Claim 1, the first 2n

Taylor series coefficients of β2
(

r2

1+r2

)
centered at r = 0 determine the first n Taylor

series coefficients of β2(s) at s = 0. Finally, notice that the first n + 2 Taylor

series coefficients of r2

(1+r2)2 β
2
(

r2

1+r2

)
at r = 0 determine the first n Taylor series

coefficients of β2
(

r2

1+r2

)
at r = 0. This completes the proof of the claim. �

Lemma 3.3. Let f(r) : R→ R be smooth and bounded. Then:∫ ∞
0

f(r)
2r(k + 1)

(1 + r2)k+2
dr ∼

∞∑
n=0

f (n)(0)(k − n
2 )!n2 !

n!k!
,

as k →∞.

Proof. The proof is very similar to Watson’s Lemma (see for instance [Mil06, Section
2.2]). Let s > 0 and break up the integral:∫ ∞

0

f(r)
2r(k + 1)

(1 + r)k+2
dr =

∫ s

0

f(r)
2r(k + 1)

(1 + r)k+2
dr +

∫ ∞
s

f(r)
2r(k + 1)

(1 + r)k+2
dr.

Analyzing the second term, we get:∣∣∣∣∫ ∞
s

f(r)
2r(k + 1)

(1 + r2)k+2
dr

∣∣∣∣ ≤ ∫ ∞
s

∣∣∣∣f(r)
2r(k + 1)

(1 + r2)k+2

∣∣∣∣ dr
≤ k + 1

(1 + s2)k

∫ ∞
s

∣∣∣∣f(r)
2r

(1 + r2)2

∣∣∣∣ dr.
Therefore,

∫∞
s
f(r) 2r(k+1)

(1+r2)k+2 dr = o(k−n) for every n.

Next, we analyze the integral from 0 to s. Fix N , and consider the Taylor series
expansion (with remainder) of f centered at zero:

f(r) =

N∑
n=0

f (n)(0)

n!
rn +Rn(r),

where |Rn(r)| ≤ supτ∈[0,s] |f (N+1)(τ)| r
N+1

(N+1)! . Replacing f(r) in the integrand with

its Taylor series expansion yields:∫ s

0

f(r)
2r(k + 1)

(1 + r2)k+2
dr =

∫ s

0

N∑
n=0

f (n)(0)

n!

2rn+1(k + 1)

(1 + r2)k+2
dr +

∫ s

0

RN (r)
2r(k + 1)

(1 + r2)k+2
dr.
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Note that:∫ s

0

2rn+1(k + 1)

(1 + r2)k+2
dr =

∫ ∞
0

2rn+1(k + 1)

(1 + r2)k+2
dr −

∫ ∞
s

2rn+1(k + 1)

(1 + r2)k+2
dr

=
(1 + k)Γ(1 + k − n

2 )Γ(1 + n
2 )

Γ(2 + k)
−
∫ ∞
s

2rn+1(k + 1)

(1 + r2)k+2
dr

=
(k − n

2 )!n2 !

k!
−
∫ ∞
s

2rn+1(k + 1)

(1 + r2)k+2
dr,

provided 2k−n > −2. Analyzing the remaining integral from s to∞ using Cauchy-
Schwarz, we get:∫ ∞

s

2rn+1(k + 1)

(1 + r2)k+2
dr ≤

√∫ ∞
s

(k + 1)r

(1 + r2)k+2
dr

√∫ ∞
s

2r2n+1(k + 1)

(1 + r2)k+2
dr

≤ (k + 1)1/2

(1 + s2)k/2

√∫ ∞
s

r

(1 + r2)2
dr

√∫ ∞
s

2r2N+1(k + 1)

(1 + r2)k+2
dr.

Provided 2k − 2N > −2, we conclude that
∫∞
s

2rn+1(k+1)
(1+r2)k+2 dr = o(k−`) for every

` > 0. Therefore, we obtain the asymptotic expansion:∫ s

0

f(r)
2r(k + 1)

(1 + r2)k+2
dr ∼

∞∑
n=0

f (n)(0)(k − n
2 )!n2 !

n!k!
,

and the claim follows. �

4. Time evolution of the spectral measure. The goal of this section is to
sketch an idea to evolve the spectral measure according to the Toda lattice time
evolution and relate that back to the time evolution of H according to the Toda

PDE. Let Lk be the matrix corresponding to the operator T
(k)
H with respect to the

basis {e`}k`=0. Evolve Lk according to the Toda equations, given by:

L̇k = [B(Lk), Lk], B(Lk) = Lk,− − (Lk,−)>,(4.1)

where Lk,− is the strictly lower triangular part of Lk. To solve the Toda equation,
write:

etLk = Q(t)R(t),

where Q(t) is orthogonal and R(t) is upper triangular. Then the solution of (4.1)
is:

Q>(t)LkQ(t).

We are interested in the time evolution of the spectral measure, which is given by:

dµ(t) = 〈Qe0, LkQe0〉,(4.2)

where we have suppressed the dependence of Q on t.
Possible lines of inquiry:

(1) The measures dµ(t) exists for all time, however, the solutions to the cor-
responding Toda PDE do not necessarily. Is there some way of detecting
shocks in the Toda PDE using dµ(t)?

(2) Investigate the time evolution of these measures numerically.
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(3) Develop an asymptotic expansion for dµ(t) and compare it to the solution
of the Toda PDE. (This is really wishful thinking.)

Example.
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